
Lecture 1: sine-Gordon equation
and solutions

• Equivalent circuit

• Derivation of sine-Gordon equation

• The most important solutions

� plasma waves

� a soliton!

� chain of solitons

� resistive state

� breather and friends

• Mechanical analog: the chain of pendula

• Penetration of magnetic field

Introduction to the fluxon dynamics in LJJ Nr. 2



Why LJJ?

• Almost ideal system to study soliton dynamics
(simple measurable quantities e.g. V ∝ u)

• Applications as oscillators (FF, ZFS, FS,
Cherenkov, FF transistors)

• Physics of layered HTS (dynamics+losses)

• Studying “fine” properties: fluxon in a potential,
energy level quantization, etc.

• Some JJ are just long

• It is nice non-linear physical system ;-)
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Equation of long Josephson
junction
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{
φk+1 − φk = 2πΦk/Φ0 = 2π

Φ0

(
Φe − LIk

L

)
Ik
L + Ie = Ik+1

L + Ik

Ik,e → Jk,edx, L → ldx, Φe → HΛdx

{
φx = 2π

Φ0

(
HΛ − lIk

L

)
Ik

L

dx = Je − Jk

→ @ x = 0, L Ik
L = 0

φx = 2πHΛ
Φ0

We get rid of Ik
L: Φ0

2πlφxx = J(x) − Je
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Sine-Gordon Equation

RSJ model & l = µ0d
′/w, J(x) = j(x)w, Je = jew:

Φ0

2πµ0d′ φxx = jc sin φ +
V

R
+ CVt − je

Φ0

2πµ0d′jc︸ ︷︷ ︸
λ2

J

φxx = sin φ +
Φ0

2πRjc︸ ︷︷ ︸
ω−1

c

φt +
Φ0C

2πjc︸ ︷︷ ︸
ω−2

p

φtt − je

jc︸︷︷︸
γ

Normalized units: x̃ = x/λJ , t̃ = tωp.

φx̃x̃ − φt̃t̃ − sin φ = αφt̃ − γ

perturbed sine-Gordon equation

α =
ωp

ωc
=

1√
βc

=
1√

2π

Φ0
jcR

2C

Other normalized quantities:

v = φt̃, h = φx̃

Characteristic velocity: c̄0 = λJωp, u = v/c̄0
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Boundary conditions

Boundary conditions for linear LJJ:

φx̃|x=0,� = h

Boundary conditions for annular LJJ:

φ|x̃=0 = φ|x̃=� + 2πN

φx̃|x̃=0 = φx̃|x̃=�

Perturbations are small: α � 1, γ � 1.
For Nb-Al-AlOx-Nb junctions at T = 4.2 K α ∼ 10−2.
The typical value of γ ∼ 0.1.
Taking α = γ = 0 we get:

φx̃x̃ − φt̃t̃ − sin φ = 0
unperturbed sine-Gordon equation
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1: Josephson plasma waves

Consider small amplitude waves:

φ(x, t) = A sin(kx − ωt), A � 1

Substituting into φxx − φtt − sin φ = 0 and using
approximation

sin [A sin(kx − ωt)] ≈ A sin(kx − ωt)

we get the dispersion relation for EM waves in the LJJ:

ω(k) =
√

1 + k2

Picture. Non-Josephson strip-line. c̄0 = 1 is the Swi-
hart velocity. Plasma gap.
Phase velocity:

uph =
ω

k
=

√
1 +

1
k2 > 1

i.e. uph > c̄0 → Swihart velocity in the LJJ is the
minimum phase velocity and maximum group velocity
of linear EM waves.
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Dispersion of linear waves
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Mechanical analog of LJJ

This twisting pendula are generated

by PostScript program

Coded by Dr. Edward Goldobin, 1999

Josephson phase φ angle of pendulum

bias current γ torque

damping coefficient α friction in the axis

Josephson voltage φt angular frequency
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2: Soliton
Unperturbed sine-Gordon equation has exact solution:

φ(x, t) = 4 arctan exp
(
± x−ut√

1−u2

)
This is a solitary wave or soliton. It can move with
velocity 0 ≤ u < 1 (i.e. c̄0!). Picture. Soliton is a
kink which changes the Josephson phase from 0 to 2π
(soliton) or from 2π to 0 (anti-soliton).
The field of soliton is

h = φx =
2

cosh( x−ut√
1−u2 )

, h|x=0 = 2

Existence of the soliton
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Fluxon shape & contraction

π

φ
φ

φ
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Lorentz invariance

Sine-Gordon equation is invariant with respect to the
Lorentz transformation:

x → x′ =
x − ut√
1 − u2

, t → t′ =
t − x/u√
1 − u2

Thus, soliton behaves as relativistic object and con-
tracts when approaching the velocity of (our!) light
— Swihart velocity! Picture.
In spite of contraction, soliton always carries one quan-
tum of magnetic flux:∫ ∞

−∞
φx dx = φ(∞) − φ(−∞) = 2π

Since φ = 2πΦ
Φ0

, Φ = Φ0. Therefore, the soliton in LJJ
is called fluxon. An antifluxon carries −Φ0.
The energy (mass) of the soliton (next slide):

E(u) = m(u) =
8√

1 − u2
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Mechanical analog of LJJ

This twisting pendula are generated

by PostScript program

Coded by Dr. Edward Goldobin, 1999

Josephson phase φ angle of pendulum

bias current γ torque

damping coefficient α friction in the axis

Josephson voltage φt angular frequency
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Fluxon interaction

Hamiltonian (energy) of the LJJ:

H =
∫ +∞

−∞

φ2
t

2︸︷︷︸
K

+
φ2

x

2
+ (1 − cos φ)︸ ︷︷ ︸

U

dx

Substituting two solitons with the distance ∆x be-
tween them

∆
∆

∆

∆

• two fluxons repel each other.

• fluxon and anti-fluxon attract.
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3: Chain of fluxons

Fluxons can form a dense chain

φ(x, t) = 2 am(x − ut, k) + π

For h 	 1:

φ(x, t) ≈ h(x − ut) − sin [h(x − ut)]
h2 (1 − u2)

This twisting pendula are generated

by PostScript program

Coded by Dr. Edward Goldobin, 1999

(-: mincing machine :-)

Intuitive explanation of repelling.

Introduction to the fluxon dynamics in LJJ Nr. 15



4: Resistive (McCumber) state

φ(x, t) = (Hx + ωt) − sin (Hx + ωt)
ω2 − H2

This twisting pendula are generated

by PostScript program

Coded by Dr. Edward Goldobin, 1999
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5. Breather

Since fluxon and antifluxon attract each other, they
can form a bound state which oscillates around com-
mon center of mass:

φ(x, t) = 4 arctan
[
tan Θ

sin(t cos Θ)
cosh(x sin Θ)

]

where Θ = 0 . . . π/2. A breather with the moving
center of mass can be obtained using Lorentz trans-
formations.
Fluxon-antifluxon collision:

φ(x, t) = 4 arctan


 sinh

(
ut√
1−u2

)
u cosh

(
x√

1−u2

)



There is a positive phase-shift !
Fluxon-fluxon collision:

φ(x, t) = 4 arctan


 sinh

(
x√

1−u2

)
u cosh

(
ut√
1−u2

)



There is a negative phase-shift !
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Penetration of magnetic field into
LJJ

φ
φ

φ
φ
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Penetration of magnetic field into
LJJ

When h exceeds 2, the fluxons enter the junction and
fill it with some density, forming a dense fluxon chain.

Example: h = 4, φ = hx, so φ(L) − φ(0) = h�,
N = h�

2π = 4×50
6.28 ≈ 31.8. Looking at picture, we

see 30 fluxons. For smaller fields the correspondence
is worse, since the dense fluxon chain approximation
works not so good, and at h < 2 does not work at
all. e.g. for h = 2.1, N = 16.7, but we see only 10
fluxons.
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Lecture 2: Dynamics of fluxon

• Perturbation theory

• Fluxon steps in annular LJJ

• ZFS in linear LJJ

• Flux-Flow and FFS (Eck peak)

• Fiske Steps
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Perturbation theory of
McLoughlin and Scott

All solutions of s-G equation (except resistive state)
considered during the previous lection are solutions of
the unperturbed sG equation:

φxx − φtt − sin φ = 0

We also have seen that:

H =
+∞∫
−∞

φ2
t

2︸︷︷︸
K

+
φ2

x

2
+ (1 − cos φ)︸ ︷︷ ︸

U

dx (1)

The real equation which governs the Josephson phase
dynamics in the system is perturbed s-G equation:

φxx − φtt − sin φ = αφt − γ (2)

The Hamiltonian (1) corresponds only to the l.h.s. of
(2) while r.h.s. describes the energy dissipation and
injection.
Let us write down the change of energy with time.
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Energy balance equations

dH

dt
=

+∞∫
−∞

d

dt

[
φ2

t

2
+

φ2
x

2
+ (1 − cos φ)

]
dx

=

+∞∫
−∞

(φtφtt + φxφxt + φt sin φ) dx

= φxφt|+∞
−∞︸ ︷︷ ︸

zero if localized

+

+∞∫
−∞

(φtφtt − φxxφt + φt sin φ) dx

=

+∞∫
−∞

−φt (φxx − φtt − sin φ)︸ ︷︷ ︸
l.h.s. of sine-Gordon

dx

=

+∞∫
−∞

−φt (αφt − γ)︸ ︷︷ ︸
r.h.s. of sine-Gordon

dx

=
+∞∫
−∞

(
γφt − αφ2

t

)
dx = 0
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Energy balance for fluxon

+∞∫
−∞

γφt dx

︸ ︷︷ ︸
Fγu

=

+∞∫
−∞

αφ2
t dx

︸ ︷︷ ︸
Fαu

φ(x, t) = 4 arctan exp
x − ut√
1 − u2

φt(x, t) =
−u√
1 − u2

2
cosh x−ut√

1−u2

−γ2πu = α
8u2

√
1 − u2

|u| = 1√
1+

(
4α

πγ

)2

|u| ≈ πγ

4α
, for γ � 1

|u| → 1, for γ → 1
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I–V Characteristic
γ

Example: annular LJJ

V =
∆Φ
∆t

=
nΦ0

L/u
=

nΦ0u

L

I-V characteristic ⇐⇒ γ–u characteristic

Vmax =
nΦ0c̄0

L
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Collision with the edge
φ

φ
φ

φ
φ

φ

Collision with edge ≡ fluxon-antifluxon collision
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Fluxon trajectories

animations see at http://christo.pit.physik.uni-tuebingen.de:88/FluxonDynamics/
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Zero Field Steps

V =
∆Φ
∆t

=
Φ0 − (−Φ0)

2L/u
=

Φ0u

L

But frequency of collisions is f = u/2L, i.e., two
times lower!

γ
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How the fluxons get into the
junction?

Moving down along McCumber branch the rotation
frequency becomes lower resulting in instability due to
thermal fluctuations.

This twisting pendula are generated

by PostScript program

Coded by Dr. Edward Goldobin, 1999

ZFS are better visible at T > 4.2 K
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Flux-flow

Let us suppose that LJJ is filled with fluxons e.g. some
field H > Hc1 is applied to the linear LJJ.

VFF = ∆Φ
∆t = HΛL

L/u = HΛu
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Flux-flow IVC

VFF = ∆Φ
∆t = HΛL

L/u = HΛu

γ

The maximum on the IVC at u = c̄0 is called a flux-
flow resonance or Eck peak.
Application: tunable oscillators for the frequencies 50–
800 GHz.
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Interaction with edges
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• The boundary conditions φx = h are not satis-
fied if we take running solutions φ(x − ut).

• ⇒ we have to add “reflected wave” which prop-
agates towards the middle of LJJ.

• This wave decays on the distances ∼ 1/α.

• αL 	
 1 results in the formation of the standing
wave.

• moving fluxons synchronize with this standing
wave, resulting in geometrical resonances on the

IVC at: V FS
n = Φ0

c̄0

2L
n
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Fiske Steps

• Linear theory (H 
 2,L 
 1) is developed.

• Non-linear theory (any H, any L) in the present
state gives only the amplitude of resonances in
1-harmonic approximation.

• General nonlinear theory is not developed yet.

• Experimental IVC contains some features (shift
or sub-families, fine structure of FSs) which are
not explained.
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