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The dependence of the electric resistance R of nanoperforated graphene samples on the 
position of the Fermi level EF, which is varied by the gate voltage Vg, has been studied. 
Nanoperforation has been performed by irradiating graphene samples on a Si/SiO2 substrate by 
heavy (xenon) or light (helium) ions. A series of regular peaks have been revealed on the R(Vg) 
dependence at low temperatures in zero magnetic field. These peaks are attributed to the passage 
of EF through an equidistant ladder of levels formed by orbitally quantized states of edge Dirac 
fermions rotating around each nanohole. The results are in agreement with the theory of edge 
states for massless Dirac fermions. 

1. INTRODUCTION 

After a decade since the time of obtaining graphene [1, 2], the investigation of its unusual 
properties caused by the presence of massless Dirac fermions remains of current interest. The 
theoretical possibility of the existence of edge states in graphene belongs to such properties [3–
5]. One of the first indications of the appearance such states in transport measurements is the 
observation of Aharonov–Bohm type magnetic oscillations of the resistance in perforated 
samples of thin graphite [6] and graphene [7] in very high magnetic fields. In the absence of a 
magnetic field, edge Dirac fermions, if they exist, should move in an effective narrow ring 
around each nanohole. Since the perimeter of the hole is finite and motion is periodic, the energy 
of edge Dirac fermions should be orbitally quantized, similar to the energy of the electron in a 
Bohr atom. The aim of this work is to reveal the orbital quantization levels of edge Dirac 
fermions in graphene samples with nanoholes by varying the voltage Vg on the control electrode 
(gate). 

2. SAMPLES 

The resistance of graphene samples on an oxidized highly doped silicon substrate (Si/SiO2) with 
the thickness d = 300 nm of the oxide layer was measured. We studied both graphene samples 
obtained from Manchester University (Graphene Industries Co) and our samples, which were 
mechanically exfoliated from natural graphite single crystals using an adhesive tape with the 
subsequent transfer on the substrate. Nanoholes were created by two methods: first, irradiation 
by 167-MeV heavy ions (Xe+26) at the ITS-100 cyclotron, Laboratory of Nuclear Reactions, 
Joint Institute for Nuclear Research, and, second, irradiation by helium ions at the ORION 
helium ion microscope, St. Petersburg State University.  



In the former case, an ensemble of randomly distributed columnar defects is formed. Each defect 
for electrons in graphene is equivalent to the appearance of one nanohole. The diameter of 
nanoholes D was estimated with an atomic force microscope (Fig. 1b) (and a scanning electron 
microscope) as D ≈ 10 nm. Columnar defects were identified by hillocks of an amorphous 
material extruded from them [8]. Their average concentration corresponded to a xenon ion 
fluence of 3 × 109 cm–2. In the latter case, the irradiation of graphene by a helium ion beam with 
a diameter of 1–2 nm resulted in the formation of a lattice of nanoholes with a diameter of D ≈ 2 
nm and a density of 2 × 1011 cm–2. In this case, the resistance of the sample increased by a factor 
of 20 because the mean free path of carriers decreased from 300–500 nm to a value of about the 
lattice period (≈20 nm). The electric contacts were deposited by means of the laser ablation of 
gold and had a contact resistance of about 100 Ω. 

 

 

 

 

 

 

 

 

Fig. 1. (a) Optical image of the graphene sample on the Si/SiO2 substrate irradiated by heavy 
ions and (b) image obtained with a scanning atomic force microscope in the phase contrast 
mode; the scale is 1 μm. 

3. EXPERIMENT 

The measurements were performed in a cryogenic insert with an exchange gas at a fixed 
temperature in the interval of 1.8–100 K. The graphene samples with the gate electrode were 
included in a measuring circuit according to the scheme of a field-effect transistor with a 
common source. The voltage on the gate was varied with a computer-controlled Keithley 2400 
SourceMeter at a rate of no higher than 1 V/s with the control of the current through the gate. 
The resistance of the sample was measured on a weak direct or alternating current (0.1–10 μA). 
The weakest measuring current was more than three orders of magnitude stronger than the 
leakage current from the gate into the sample. The dc and ac voltages were measured by a 
Keithley 2182 nanovoltmeter and an SR 530 two-phase synchronous amplifier. The R(Vg) 
dependences were usually recorded twice: first, with an increase in Vg and, then, with its 
decrease at both polarities of Vg. The measurements in high magnetic fields were performed at 
Laboratoires National des Champs Magnetiques Intenses (Grenoble). 

Figure 2a shows the R(Vg) dependence for the reference (nonperforated) graphene sample. It has 
a maximum at the Dirac point, which is shifted toward positive gate voltages by about 6 V; this 
shift is usually due to the adsorption of water vapor. For this reason, all samples at Vg = 0 have a 
hole conductivity with a hole density of 1012 cm–2 at a mobility of (1–5) × 103 cm2/(V s). 
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Fig. 2. Gate voltage dependence of the electric resistance of the (a) reference graphene sample 
and (b) graphene sample with columnar defects (sample 3, see Fig. 1b). The vertical straight line 
marks the voltage corresponding to the Dirac point. The arrows indicate the main series of 
maxima. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Gate voltage dependence of the resistance of the nanoperforated graphene sample 
obtained with a helium ion microscope (sample 1). The arrows indicate the positions of peaks in 
the resistance. The peaks are more pronounced in a magnetic field of 20 T. 

A series of peaks appears in the resistance R(Vg) of the graphene samples with columnar defects 
obtained in Dubna (see Fig. 2b). We discuss only strong peaks (the main series). Similar peaks 
are also manifested in more “dirty” structures with a lattice of nanoholes obtained at St. 
Petersburg State University using the helium ion microscope (Fig. 3). The peaks in the latter case 
are relatively weak. However, they are strongly enhanced in a magnetic field (20 T) at which the 
magnetic length becomes comparable with the perimeter of a nanohole. A regular series of such 
peaks in all samples is observed only on the branch of the R(Vg) dependence that corresponds to 
the hole conductivity. The following universal property is remarkable for the main series of 
peaks on the R(Vg) curve: the position of the Nth peak measured from the Dirac point is 
proportional to N2 for both types of samples (Fig. 4). 
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Fig. 4. Positions of peaks VgN marked by arrows in Figs. 2 and 3 versus the square of their 
ordinal number N. The gate voltage Vg was counted from the Dirac point. The data were 
obtained (circles, right scale) for sample 3 irradiated by heavy ions and (crosses, left scale) for 
sample 1 irradiated by helium ions. The left and right scales differ by a factor of 20. 

4. COMPARISON WITH THEORY 

The spectrum of surface states for massive Dirac electrons on a half-space was obtained for the 
first time in [9] (see also review [10]). The boundary of a sample is characterized by the only 
phenomenological parameter a, which appears in the boundary condition for envelope functions 
and describes the electronic structure of the surface at atomic scales. In the massless limit, the 
energy of the surface states is related to the two-dimensional tangential component of the 
momentum k || as  

                                     E =  2 ħavF s|k|||                                    (1) 
 

Here, vF is the effective “speed of light” in the Dirac equation and the parameter a is for 
simplicity treated as small (|а|<<1). The “spin” number s=±1 is an eigenvalue of the chirality 
operator, which is in this case proportional to the mixed products of the vectors of spin, normal, 
and k||.  

In graphene, the valley degree of freedom serves as the spin and the edge of a sample plays the 
role of the surface. The simplest theory of edge states of massless Dirac fermions in semi-infinite 
graphene can be developed by neglecting the intervalley interaction. The result at |а|<<1 is 
described by Eq. (1) up to the notation: the branches of the one-dimensional tangential 
momentum k|| > 0 and k|| < 0 correspond to different valley quantum numbers s=±1 [5, 11, 12]. 
The microscopic calculation of the boundary (edge in this case) parameter a is a very difficult, 
practically ill posed problem. We only note that the finiteness of the parameter a results in the 
asymmetry of spectrum (1). This can be understood in the “inverse heterojunction” model [13]. 
In this model, the asymmetry of the spectrum appears with allowance for change in the work 
function on the junction (see references in [10]). We determine the parameter a from the 
comparison with experiments. 



Edge Dirac fermions move along the linear edge at the velocity vedge = 2avF, which is much 
lower than the Fermi velocity |а|<<1. In the case of a nanohole, the edge is closed and edge 
carriers rotate around the hole clockwise or counterclockwise (depending on the number of a 
valley). We assume that the edge is uniform; i.e., the parameter a remains unchanged in the 
process of motion along the edge. Then, owing to the orbital quantization of the tangential 
motion, spectrum (1) becomes discrete, more precisely, quasidiscrete (see Fig. 5). Fermions in 
edge states have a finite lifetime because of the nonconservation of the tangential momentum 
component and displacement of Dirac fermions from the edge to the continuum of bulk states. 

 

Fig. 5. Energy of the Dirac fermion versus the tangential component of the momentum k|| in 
graphene with a hole of diameter D in the joint valley scheme. The semiclassical orbital 
quantization k|| = 2N/D with the experimentally extracted sign of the edge parameter a results in 
the appearance of a ladder of hole type edge levels (see Eq. (2)). Edge Dirac fermions occupying 
this ladder rotate around the hole clockwise or counterclockwise in the (circles) left or (crosses) 
right valleys, respectively. The shaded region is the continuum of bulk states. 

Neglecting the decay of edge states, we can obtain the following simple expression for the Nth 
energy level of the edge state doubly degenerate in the number of the valley and doubly 
degenerate in the real spin:  

EN = 4 ħavFN/D,                                       (2) 
 
Here, we use the semiclassical orbital quantization condition πD = 2πN/k|| and N = 1, 2, …. In 
this approximation, spectrum (2) is equidistant. The relation between the position of the Fermi 
level in graphene and the carrier density n = Vgε0ε/ed has the form EF = ħvF(πn)1/2 known for 
massless Dirac fermions. Here, d and ε are the thickness and relative permittivity of the silicon 
oxide layer on which graphene is deposited. The resulting expression for the gate voltage VgN 
corresponding to the resonance condition EF =EN has the form 

VgN  =  (16 a2ed/ π ε0ε) (N/D)2 .                      (3) 
 
Nanoperforation can be considered as the introduction of additional scatterers for bulk Dirac 
fermions. It is reasonable to assume that the condition EF =EN is accompanied by the resonant 
scattering of carriers on nanoholes, which results in peaks in the resistance of the sample. 

Expression (3) is in agreement with the experiment. The positions of peaks VgN is indeed 
proportional to N2. Furthermore, the slope of the straight line VgN(N2) in Fig. 5 should be 
inversely proportional to D2 under the assumption that the parameter a is the same for samples 
with different diameters. This property is also in agreement with the experiment within the error. 
Indeed, for two samples with the diameters of nanoholes of 10 and 2 nm, the slopes of the 
straight lines VgN(N2) differ by a factor of 20, whereas the ratio of the squares of the diameters is 
25 ± 30%.  



The parameter a can be determined from the slope of the VgN(N2) dependence by comparing with 
Eq. (3). It appeared to be ≈ 0.07 with an accuracy of 30%, which is determined by the accuracy 
of the measurement of the diameter D. This value is in quantitative agreement with a value 
obtained from the magnetic oscillations of the resistance on nanoperforated thin graphene 
samples [14]. Since the series of peaks is observed on the hole part of the R(Vg) curve, the 
parameter a is negative. Therefore, edge Dirac fermions are apparently holes.  

The energy of the first level E1 and the distance between the levels for samples with a hole 
diameter of 10 nm are 17.5 mV. The peaks are smeared with an increase in the temperature and 
disappear at a temperature of about 60 K corresponding to the condition E1 ~ 3kT. The peaks are 
also smeared with an increase in the measuring current at low temperatures. This is observed 
when the lateral voltage on the sample at high currents becomes comparable with E1/e. 

5. CONCLUSIONS 

To summarize, a series of regular peaks located asymmetrically with respect to the Dirac point 
has been revealed on the gate voltage dependence of the resistance of perforated graphene at low 
temperatures. The position of the Nth peak VgN measured from the voltage corresponding to the 
Dirac point is proportional to N2. The velocity of edge carriers determined from the slope of this 
straight line is an order of magnitude lower than the velocity of bulk Dirac fermions. The effect 
is attributed to the quantization of orbital motion of edge Dirac fermions around a nanohole. As a 
result, an equidistant ladder of quasidiscrete levels of edge Dirac fermions is formed on each 
nanohole. When the gate voltage is varied, the Fermi level successively intersects the levels of 
this ladder; as a result, the peaks of the resistance appear. The only phenomenological parameter 
of the theory a ≈ –0.07 has been obtained by comparing the theory of edge states in graphene [5]. 
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